
Movie Recommendation System based on
Self-Organizing Maps

Kaivan Wadia
Department of Computer Science
The University of Texas at Austin

Austin, Texas
Email: kwadia@cs.utexas.edu

Pulkit Gupta
Department of Computer Science
The University of Texas at Austin

Austin, Texas
Email: pulkit@cs.utexas.edu

Abstract—A Self-Organizing Map is a neural network tech-
nique in the domain of unsupervised learning. A SOM is typically
trained to produce a low-dimensional, categorized representation
(typically two-dimensional) of a high-dimensional input space.
Recommender systems suggest artifacts to a user, for example,
suggestions about movies or music a user might like, or items the
user might like to purchase. Recommender systems are typically
seen as a field closely related to Information Retrieval (IR), and
IR methods are most commonly used to implement such systems.
This paper presents a novel method to implement a recommender
system based on SOMs. Working with a subset of the Internet
Movie Database, we show that our system performs considerably
better than chance, but worse than the state of the art. We also
discuss ways in which our system can be improved and better
evaluated.

I. INTRODUCTION

Self-Organizing Maps (SOM) are a class of Neural Net-
work algorithms in the unsupervised-learning category. The
central property of a SOM is that it forms a nonlinear pro-
jection of a high-dimensional input space on a regular, low-
dimensional (usually two-dimensional) grid (Kohonen, 1995).
The central idea is that the SOM can discover underlying pat-
terns or structure in the data, and thereby effectively cluster the
input data items as well as represent topological relationships
between them. The original SOM algorithm was invented by
Professor Teuvo Kohonen in 1981-82, and since then a number
of different versions of the algorithm, as well as various
generalizations and extensions to it, have been developed.

Recommendations are a part of everyday life. In a world
where we often have to make consumption choices without
having sufficient knowledge of, or experience with, possible
alternatives, recommender systems have an important part to
play. Typically, we rely on information obtained from other
people, either directly or indirectly, to make decisions or settle
upon a course of action. For example, we might rely on word-
of-mouth opinions or online ratings and reviews while deciding
which movie to watch. A recommender system essentially
automates this process, helping a user quickly and effectively
find what he/she is looking for.

The two most common approaches taken by recommender
systems are collaborative filtering and content-based filtering.
In collaborative filtering, user similarity is calculated to find
other, similar users in the system, and recommendations are
based on the items that similar users found relevant . This is
the approach taken by Amazon - it looks at your purchases, and

recommends other items that were purchased by other users
who bought the same item. In content-based filtering, recom-
mendations are generated based on items a user previously
found relevant. Music recommendations on Pandora radio and
Spotify are generally made using content-based filtering.

In a recommender system, the system suggests certain
items (or artifacts) contained in the system, based on defined
criteria. Recommender systems are different from typical in-
formation retrieval systems in one major way - instead of
generating results based on an explicit query entered by the
user, recommender systems collect information about the user
(either implicitly or explicitly) and generate recommendations
based on that information.

SOMs, by virtue of their ability to represent high-
dimensional data, have a large number of potential applica-
tions. WEBSOM (Kaski, Honkela, Lagus, & Kohonen, 1998)
is one of the most popular extensions of the SOM. The
WEBSOM method can be used to organize large collections
of documents, and various algorithms have been developed
to implement information retrieval based on WEBSOM. Our
project aims to explore the possibility of applying this tech-
nique beyond traditional text information retrieval.

In this paper, we present a new method of building a
recommender system, based on the WEBSOM project. Our
project can therefore be thought of as lying at the intersection
of the fields of Information Retrieval and Neural Networks.
Our system is a content-based filtering system it works with
a user’s movie-watching history and comes up with a list of
movies that the user might like. Our initial dataset was a
collection of over 1400 movies taken from the Internet Movie
Database (IMDb), and we obtained movie-history data from
28 users to evaluate the performance of our system.

This paper is organized as follows: section 2 briefly talks
about background and related work. Section 3 describes our
architecture, approach and dataset. Section 4 describes the
experiments conducted and results obtained. We discuss the
results and present possible future directions our work may
take in Section 5, before concluding in Section 6.

II. RELATED WORK

Recommender systems are a relatively new idea, and their
history can be traced to Recommender Systems (Resnick &
Varian, 1997). Toward the next generation of recommender



systems: A survey of the state-of-the-art and possible exten-
sions (Adomavicius & Tuzhilin, 2005) provides a survey of
the field of recommender systems, and tracks the advances
that have been made.

Movie recommendation systems have either been based
on collaborative-filtering approaches or content-based filtering
approaches. Certain systems also take a hybrid approach, using
a combination of both techniques.

Collaborative-filtering systems predict recommendations
solely on the basis of the past ratings provided by the user.
Based on these ratings the system computes a function which
predicts the ratings of movies rated by other users and not rated
by the user. Collaborative-filtering systems have traditionally
output a predicted rating for each movie rather than a binary
value stating whether the user will like or dislike a movie.
Such a system computes ratings of unseen movies based
on the ratings of other people who have similar preferences
to the user. The similarity of users is computed by various
statistical techniques. One such system called Recommender
(Basu, Hirsh, Cohen, et al., 1998) computes for each user a
subset of users who have ratings similar to the user. This small
group of users are called the recommenders for a specific user.
The ratings of these recommenders are then used to evaluate
the rating of an unrated movie. The recommended movies are
then presented to the user as a rank-ordered list based on the
rating of each movie.

Content-based recommender systems are based on the non-
rating information of a movie. These systems use information
such as the director, cast, plot keywords, user reviews and
critic reviews to recommend movie to the user. A content-
based recommendation system takes as input the description
of each movie the user has liked and formulates a procedure
that would take as input a movie description and predict
whether a user would like that movie or not. These systems
try to extrapolate the preferences of the user based on movie
descriptions and do not rely on other peoples ratings as
in the social-filtering techniques. For each user a separate
recommendation procedure is generated based on the movies
he/she likes. Similarity in such systems is computed using
Euclidean distance or cosine distance. The description of each
movie is stored as a vector and can have feature weighting i.e.
certain features such as cast and director might have a higher
weightage while computing similarity than other features such
as plot keywords. Since content-based systems do not rely on
the ratings of movies by users a movie can be suggested right
after its release as long as the relevant information about that
movie is known. This enables content-based systems to include
new movies in their database much faster than collaborative-
filtering systems.

The idea of using Self-Organizing Maps for tasks related to
the categorization and retrieval of information is not a new one.
Extensive work in this area was done as part of the WEBSOM
project (Kaski et al., 1998), in which SOMs of large document
collections were created and subsequently used for document
retrieval based on user queries. The results achieved by using
the WEBSOM method on massive document collections can
be examined in Mining massive document collections by the
WEBSOM method (Lagus, Kaski, & Kohonen, 2004).

III. OUR APPROACH

The goal of our project is to develop a system that takes
as input a set of movies liked by the user and returns another
set of movies that are expected to be liked by the user.
We use a content-based approach along with Self-Organizing
Maps to build our system. SOMs have proved useful in the
classification and organization of data such as large document
collections, as discussed in the last section. Our approach is
to use a SOM to organize and classify a movie database and
use this classification to search for movies to recommend to
the user. We approach the movie recommendation problem as
one of classification, rather than the more common approach
of predicting the rating of a movie. Given the movies a user
likes, the system needs to predict whether a given movie will
be liked or disliked by the user.

We decided to use SOMs as they have an inherent property
of classifying data based on the underlying features of the data.
One of the main advantages of using SOMs is that the search
space is significantly reduced, and the comparisons can focus
on specific, relevant subsets of the collection, leading to faster
search. Another notable advantage is the ability to use the SOM
representation of a data collection for visualization, promoting
the exploration and discovery of new information.

The system we developed classifies movies onto a SOM
based on the genre and plot keywords of the movies. Once
the map has been trained, to make recommendations for a
given user, we collect movies from the map based on the
given users movie-watching history. We decided to collect
twice as many movies as the system had to output to compare
against. This proved to be a sufficiently large number while
maintaining the computational efficiency advantage of SOMs.
Once the set of movies to compare against was determined,
the system computed the similarity between the users input
movies and the collected movies using various methods such
as euclidean distance, cosine angle and dot product. The most
similar movies were returned to the user as the predictions.

Our system can be thought of as having two major phases
- the training phase, where the dataset is organized using the
SOM method, and the recommending phase, where a users
movie-watching history is used to determine a set of movies
to recommend. An overview of these phases is presented here,
with details in the next section.

A. The Training Phase

Step 1 - Preprocess the movie dataset and decide on the
input features that will be used for training the SOM.

Step 2 - Train the SOM based on the selected inputs

B. The Recommending Phase

Step 1 - The available list of movies liked by any given
user is converted to a vector matrix representation and fed to
the system as input.

Step 2 - Assuming the system is required to recommend n
movies, it collects a set of 2n movies for comparison from the
map, either by finding map units corresponding to individual
input movies, or by combining the input movies into a single
vector.



Step 3 - The system then compares each of the collected
movies with the input movies, again, either by considering the
input movies individually, or by combining the input movies
into a single vector. A number of different metrics are used to
perform these comparisons.

Step 4 - Finally, the n movies that are closest to the users
history are returned as recommendations.

IV. EXPERIMENTS AND RESULTS

We conducted a number of experiments using different sets
of features and similarity measures. Below, we describe in
detail the setup used for the experiments, and report on some
of the significant results we obtained.

A. Training and Test Data

The movie collection we had available for this experiment
was a collection of over 1,400 movies from the Internet Movie
Database (IMDb). The IMDb maintains a massive collection of
movies and factual information about those movies. All of our
content features were extracted from IMDb, and therefore our
method should be extensible to larger datasets. Each movie has
the following information: director, cast, genre, plot keywords,
user comments and critic reviews. We use the genre and plot
keyword fields of each movie to form a representation of the
movie. A single movie is represented as a vector where the
genres and plot keywords corresponding to it are marked as
1 in the vector. The vector used to describe each movie has
3,771 dimensions. All the movies were also labelled according
to the genres it belonged to. We alphabetically concatenated the
different genres associated with each movie to come up with
the labels. This was useful in presenting a visual classification
of the movies using the SOM.

In order to compute a set of movies to recommend to the
user we used the movie descriptions of the movies liked by the
user as input. We conducted an online survey to collect data
from real users. Each user was asked to mark all the movies
from our dataset that he/she had watched and liked. We used
50% of the data from each user as the training input and the
other 50% was used as a test set to compare and evaluate
the output of our system against. The input set was chosen
randomly by shuffling the users movie list and selecting the
first half of the shuffled set as the input.

B. SOM Implementation

To implement the SOM we used the SOM Toolbox Toolkit
for MATLAB (Vesanto, Himberg, Alhoniemi, & Parhankangas,
2000). It provides a MATLAB Toolbox for implementing a
SOM and use it for classification and search. We used two
different map sizes for our experiment: a smaller 16 × 12
units map and a bigger 20 × 15 units map. We decided to
use the online, sequential method of training the map over the
batch learning method, based on the arguments presented in
Advantages and drawbacks of the Batch Kohonen algorithm
(Fort, Letremy, & Cottrell, 2002). It is worth mentioning that
we also tried using the k-means clustering algorithm (Hartigan
& Wong, 1979) and Learning Vector Quantization (Kohonen,
1997) in addition to simple SOMs, but we gave up on those
methods because the classification results obtained were not
good enough.

Initially, we tried using only the genre field to classify the
movies on the SOM. This did not provide a good classification
as most of the movies were grouped together in a few units
of the map, leaving large areas of the map blank. This was
because there were only 27 unique genre combinations and
therefore they were grouped into a small number of units.
Our aim was to achieve an even distribution of movies across
the whole map with discernable boundaries between different
classifications of movies. After experimenting with various
combinations of features such as genres, directors, cast, user
comments and plot keywords, we decided to use a combination
of genres and plot keywords. It was not very useful to use the
directors feature as there were over 900 unique directors in
the set which meant that not many directors were credited for
multiple movies, and would not contribute to recommending
similar movies based on directors.

The SOM generated by using genres and plot keywords as
inputs gave an even distribution of movies with clearly defined
classifications. The maximum number of movies in any single
unit was 65 in the small map and 45 in the big map. Figure 1(a)
shows the number of movie hits in each unit of the map with a
grouping of map units into different colors based on the genre
combinations. Figure 1(b) shows the labels assigned to each
map unit which is based on the dominant genre combination of
the movies classified into that unit. Figure 2(a) and Figure 2(b)
display a magnified version of the center portion of the maps
displayed in Figure 1. In Figure 2, we can see a clear partition
between various movies based on their genre combinations.

The training input is used by the system to find the best
matching units on the SOM. There were three techniques we
used to find the best matching units: (1) Find the best matching
unit for each input movie, (2) Sum up the vectors of each input
movie to get a single vector, and find the best matching unit for
this input vector, and (3) Sum up the vectors as in the previous
approach and clamp the final vector so that none of its fields
have values greater than 1. Contrary to our expectation, we
achieved better performance with the latter two techniques.
Once we had found the best matching units, we collected all
the movies from those map units to compare against. We set up
our algorithm to collect at least twice as many movies as the
system was expected to output, for comparison. If the system
could not collect enough movies from the best-matching unit,
we gathered movies from the second best matching unit and
so on, until it gathered the required number of movies.

C. Computing Similarity

The collected movies are then compared to the input
movies to compute their similarity and return the movies which
are the most similar to the user. To compute the similarity
between movies we used various metrics: (1) Minimum Eu-
clidean distance, (2) Minimum cosine angle between vectors
and (3) Maximum dot product. For each of these metrics we
had two cases. In the first case we compared a movie with
each of the input movies and in the second case we compared
a movie with the combined input, generated as described in the
previous subsection. During the comparison stage, the system
also checks for movies that are already in the input set and
discards those movies so as not to return the same movies as
the input.



(a) Number of hits for each unit on the map (b) The label assigned to each map unit

Fig. 1. Two maps showing the hits per unit and the label of each unit. The label assigned to the unit is the dominant genre combination of the movies in that
unit.

(a) Number of hits for each unit on the map (b) The label assigned to each map unit

Fig. 2. Magnified versions of the center portion of the maps in Fig. 1



D. Evaluation Criteria

We are interested in predicting whether a movie will be
liked or disliked by a user. Many recommendation systems
which predict a rating for a given movie evaluate their results
on the basis of correlation of ratings. For example they
compare their results with actual movie ratings generated by
users or critics. This does not work for our recommendation
system as the system generates a binary output for each movie
which states whether a user will like or dislike a movie.
We shall instead use a metric commonly used in information
retrieval called precision. Precision gives us an estimate of
how many movies predicted by our system are actually liked
by the user. It is our belief that while recommending movies
the user is more interested in a small set of movies that are
predicted correctly rather than a large list he/she would have
to go through. It is also not suitable to have a very high
precision rate as the system should predict a few movies that
the user would not usually watch but will hopefully like. After
calculating the precision for each user we calculate the average
precision by macro-averaging the results for all 28 users.

E. Results

While training the map we have the ability to set a number
of parameters. We used a two phase sequential training process
to train the map. The first phase was a general training phase
and the second phase was used to fine tune the map. The
learning rate was initially set to 0.5 and was gradually reduced
to 0.1. For our initial experiment we used the small map
with 192 units. The results for the tests on the small map
are given in Table 1. The highest macro-average precision
we achieved was for the 15.1% when we used the Euclidean
distance measure of similarity and collected the movies based
on individual input movies.

For our second experiment we trained a big map of 300
units to classify the movies based on the genres and plot
keywords. The other parameters were kept the same as in the
training of the small map. The highest macro-averaged preci-
sion was again achieved when using the minimum Euclidean
distance measure of similarity which was 16.9%. The movies
in this case were collected using the combine and reduce
method rather than based on the individual input movies. The
Euclidean distance was computed against the combined input
vector. When the minimum of the Euclidean distance with each
input movie was used, the results were significantly lower.
This was also the case when using the dot product similarity
measure. We can conclude that it is better to use the combined
input vector to compute similarity rather than comparing
it with each individual movie. The results of the different
prediction methods and collection methods are summarized
in Table 2. It can generally be seen that using the combined
input vector is better for both prediction and collection. This
is because the combined input vector captures more features
about the movies the user likes than the individual input vectors
by themselves.

V. DISCUSSION

In this section, we will analyze the performance of our
system, and discuss possible ways in which this performance
may be improved.

Method Individual Combined Combined & Reduced
Euclidean Distance (Individual) 2.3% 6.2% 7.8%
Euclidean Distance (Combined) 15.1% 14.2% 13.7%

Dot Product (Individual) 14.4% 14.2% 14.6%
Dot Product (Combined) 15.0% 14.1% 14.2%

Cosine Similarity (Combined) 7.5% 12.3% 13.1%

TABLE I. RESULTS OF VARIOUS RECOMMENDATION APPROACHES
USING THE 16× 12 MAP

Method Individual Combined Combined & Reduced
Euclidean Distance (Individual) 2.2% 8.3% 9.8%
Euclidean Distance (Combined) 16.0% 16.2% 16.9%

Dot Product (Individual) 14.7% 16.2% 15.8%
Dot Product (Combined) 15.7% 16.4% 16.8%

Cosine Similarity (Combined) 9.3% 14.4% 16.1%

TABLE II. RESULTS OF VARIOUS RECOMMENDATION APPROACHES
USING THE 20× 15 MAP

It is difficult to empirically evaluate the performance of a
recommender system. Opinions on movies are subjective and
are heavily influenced by individual preferences. As recom-
mender systems have become increasingly popular, a number
of metrics for accuracy evaluation of such systems have been
proposed and used, as reviewed in A survey of accuracy
evaluation metrics of recommendation tasks (Gunawardana
& Shani, 2009). The approach we took to evaluation can
be seen as incomplete — our evaluation metric may not be
truly representative of system performance. Also, while we are
working with real user data, in an ideal experiment we would
have liked to ask users to watch movies recommended by our
system and record their reactions. Since this was not possible,
our evaluation metric may potentially have a high degree of
error — it is possible that our system is actually generating
reasonable recommendations based on the data available to
it, but because of the absence of a way to evaluate these
recommendations, they are disregarded as errors.

As can be seen, the results produced by our system are
significantly better than chance, which suggests that our system
is working, at least to some extent. It is, however, not possible
to empirically compare the performance of our system against
other similar systems because of a number of reasons, the most
notable ones being the use of different datasets, and the use
of different evaluation metrics.

As our results indicate, we obtained consistently low
percentages for Mean Average Precision (MAP). Keeping
in mind the challenges in accurate measurement of system
performance, and based on a non-scientific examination of the
recommendations returned, we believe that the significantly
low performance numbers may not be representative of actual
system performance. But we also acknowledge that these num-
bers may point to shortcomings in the current implementation
of our system. We have analyzed and recorded the shortcom-
ings we could identify, and various ways of addressing them,
in the following paragraphs. The five main shortcomings we
have identified are high input dimensionality, limited context
in inputs, feature weighting, lack of a graded rating scale, and
small dataset size.

First, the dimensionality of our input space was very high.
By using a combination of the genres and plot keywords as
inputs to the SOM, we ended up with 3,771 unique inputs,
and as a result, a 3,771 dimensional vector space. Because
of this, the vector representations of the movies in our set



may not have been similar enough to each other in meaningful
ways, contributing to the low MAP numbers. The problem of
high dimensionality can be solved by dimensionality reduction
techniques such as the random-mapping, where the high-
dimensional input space is mapped to a lower dimensional
space, while maintaining the semantic context of each vector.

Second, because we already had a high-dimensional input
space, we were precluded from including additional informa-
tion that was already available in our dataset as part of the
input to our SOM. For example, it may have been possible
to include user or critic reviews to achieve better organization,
and also incorporate some sense of sentiment in the clustering.

Third, we could have used a more complex processing
paradigm, such as the feature weighting in content-based
filtering recommender systems, as proposed in Feature weight-
ing in content based recommendation system using social
network analysis (Debnath, Ganguly, & Mitra, 2008). Feature
weighting, in conjunction with dimensionality reduction and
incorporating additional information from the dataset, would
have allowed us to handpick or assign more weight to more
relevant features, thereby allowing an unsupervised learning
task to benefit from human intuition. This would also have
made our system more generalizable — we could have in-
cluded all features available in the data set, and used different
combinations of weights for the features to obtain and compare
different organizations of the data.

For ease of data collection, we collected a binary judgment
from our test users — we only knew whether they liked a
movie or not, whereas actual IMDb data has per-user and
average ratings on a 10 point scale. While we had access to
the average rating of each film in our dataset, we couldn’t
use it because of its incompatibility with test data. If we had
graded per-user ratings available, we could have modified our
algorithm to generate predicted ratings for movies, and used
those for coming up with the recommendations, potentially
increasing accuracy.

Finally, our SOM couldn’t use director or cast information
to discriminate between movies in any meaningful way. This
was because our dataset was limited in size, and as a result
most directors and cast members were credited in only one
or a very few movies. If we had a larger dataset, more
representative of real-world IMDb data, we could potentially
have achieved better organization on the basis of these factors,
leading to better recommendations.

Our system has been implemented and tested in a modular
way. As a result, the shortcomings we have identified can be
corrected in the future, and we expect the performance of our
system to improve significantly as a result.

VI. FUTURE WORK

In addition to the system improvements described in the
Discussion section, we see a number of directions our work
can potentially take in the future. These have been described
in the following paragraphs.

It is possible to modify our algorithm to use an approach
that lies between collaborative filtering and content-based
filtering. There are multiple ways to do this. One way would be
to include user-specific data such as information about movies

liked by a user’s friends, and information from reviews written
by the user and their similarity to other reviews, as inputs to
the SOM. This would, however, result in a per-user instance
of the movie SOM, which will need to be regenerated period-
ically. The obvious downsides are constraints on memory and
computation power.

This idea can be taken forward in a computationally
efficient manner by using a single SOM for the dataset, as
happens currently, and based on user-specific information,
perform some further computation and enrichment on the
recommendations returned by the system. The content-based
filtering SOM part of the system can be set up to return a
large number of potential movie recommendations, and the
collaborative filtering part of the system, based on user-specific
information, can be used to refine the results before they are
returned to the user.

Also, one of the greatest strengths of Self-Organizing Maps
is the ease with which SOM organized data can be visually
represented and understood. SOM representations of large data
sets can be used to explore unknown parts of the information,
or to discover new information without a verbalized query or
information need. An important extension of our system can
be a GUI to visualize the SOM. This would allow users to
explore the map interactively and discover new movies that
may be of interest to them.

VII. CONCLUSION

In this paper, we have presented a novel implementation
of a movie recommendation system based on Self-Organizing
Maps. The main advantages of our method are a visual
organization of the data based on the underlying structure,
and a significant reduction in the size of the search space per
result output. Our method was evaluated against real user data
collected through an online survey, by using a subset of the
movies liked by each user as input to the system. The current
results are notably better than random, but significantly worse
than the state of the art. However, we feel that with a better
dataset and a number of improvements to our method, we may
achieve better results. Also, the true worth of our method as
a recommender system can only be determined by conducting
further experiments with larger datasets.

REFERENCES

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on, 17(6), 734–
749.

Basu, C., Hirsh, H., Cohen, W., et al. (1998). Recommen-
dation as classification: Using social and content-based
information in recommendation. In Aaai/iaai (pp. 714–
720).

Debnath, S., Ganguly, N., & Mitra, P. (2008). Feature
weighting in content based recommendation system us-
ing social network analysis. In Proceedings of the 17th
international conference on world wide web (pp. 1041–
1042).



Fort, J.-C., Letremy, P., & Cottrell, M. (2002). Advantages
and drawbacks of the batch kohonen algorithm. In Esann
(Vol. 2, pp. 223–230).

Gunawardana, A., & Shani, G. (2009). A survey of accu-
racy evaluation metrics of recommendation tasks. The
Journal of Machine Learning Research, 10, 2935–2962.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A
k-means clustering algorithm. Applied statistics, 100–
108.

Kaski, S., Honkela, T., Lagus, K., & Kohonen, T. (1998).
Websom–self-organizing maps of document collections.
Neurocomputing, 21(1), 101–117.

Kohonen, T. (1995). Self-organizing maps. Springer series in
information sciences, 30.

Kohonen, T. (1997). Learning vector quantization. In Self-
organizing maps (pp. 203–217). Springer.

Lagus, K., Kaski, S., & Kohonen, T. (2004). Mining
massive document collections by the websom method.
Information Sciences, 163(1), 135–156.

Resnick, P., & Varian, H. R. (1997). Recommender systems.
Communications of the ACM, 40(3), 56–58.

Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J.
(2000). Som toolbox for matlab 5. Citeseer.


