
Genetic Crowd - Crowd-sourced Evolution

Alexander Braylan, Kaivan Wadia, Mark Gray
University of Texas at Austin

Gates Dell Complex 2317 Speedway
Austin, TX 78712

Abstract

Genetic algorithms have been used in many different ar-
eas of computer science. Many of these areas focus on
using a genetic algorithm to optimize objective fitness
functions. We investigate the use of genetic algorithms
to optimize an output such as a game or animation along
a subjective fitness function. We explore the use of hu-
man computation to crowd-source the evaluation of the
outputs of such a genetic algorithm to evolve the gener-
ated artifact.

Introduction
Genetic algorithms have been used in many different re-
search areas of computer science. These types of algorithms
are generally used in optimization and search problems. Ge-
netic algorithms are a sub-section of the larger class of evo-
lutionary algorithms. Genetic algorithms have traditionally
been inspired by natural evolution concepts such as inheri-
tance, mutation, selection and crossover. Most common ge-
netic algorithms are initialized with a random population of
possible solutions, called candidates, for the problem being
solved. Each candidate is defined by a specific set of prop-
erties called chromosomes or genotype and is usually rep-
resented as a binary string of 0’s and 1’s. The genetic al-
gorithm progresses by evolving the candidates towards bet-
ter solutions. The evolution is done by mutating the candi-
dates by changing some or all of their properties to generate
new candidates that might be better solutions to the prob-
lem. Initially a population of randomly generated candidates
is used as the first batch of solutions and the algorithm pro-
gresses iteratively with each subsequent batch of solutions,
called generations, being evolved from the previous genera-
tion. The best candidates of every generation are determined
by using a fitness function. Fitness functions are objective
functions that are used to evaluate how close a given candi-
date is to achieving the aims of the problem being solved.

Traditionally, fitness functions involve running the solu-
tion against some test cases and evaluating the performance
of a possible solution. This is good in cases where the prob-
lem is clearly defined objectively and one has lots of test
cases to run the solution against. Certain problems do not

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

necessarily have objective solutions, such as whether a game
is fun or not or whether a picture is beautiful or not. The an-
swers to these differ based on the person viewing the picture
or playing the game. For such problems it is difficult to de-
fine a fitness function without considering human input, and
even then it is difficult to incorporate subjective input into
the fitness function. In this paper we present a system by
which we can incorporate feedback from a crowd of human
workers into the fitness function in order to evaluate the fit-
ness of a candidate.

Data collection and processing have historically been dif-
ficult problems, but with the emergence of crowdsourcing
over the last decade these problems have become much eas-
ier to solve. Using the power of the crowd one can collect
or annotate a large amount of data at a fraction of the origi-
nal cost and in a shorter period of time. Amazon Mechanical
Turk (AMT) has spearheaded this revolution and is currently
one of the largest platforms for crowdsourcing. In our sys-
tem we crowdsource the task of evaluating the candidates of
the genetic algorithm through AMT.

This paper aims to answer three main questions about the
ability to use human computation to evaluate the fitness of
a genetic algorithm’s output. What are some ways to guide
the genetic algorithm using human computation? How can
we use the input from human workers as a fitness measure
to evaluate the genetic algorithm’s objective output. Finally,
does the fitness of the population improve over time even
though we give no guidance to the workers on how an out-
put should be evaluated? In other words, do workers agree
on the aesthetic quality of novel, arbitrary artifacts? To an-
swer each of these questions, we create a genetic algorithm
to produce a subjectively evaluated output, and we use the
human computation platform Amazon Mechanical Turk to
have the crowd evaluate the fitness of the output. We de-
scribe the types of information we collect from the crowd
workers and examine their relationships. Finally, we analyze
the effectiveness of the genetic algorithm in evolving sub-
jective artifacts and assess the degree of agreement among
workers. The next section highlights the previous work in
this area followed by details of our system implementation.
We later describe the experiment we conducted and the re-
sults of the experiment and finally conclude with future di-
rections of our system.

Previous Work
Picbreeder (Secretan et al. 2008) is an example of a collab-
orative network of users creating and evolving shared im-
ages. The users determine the subjective fitness of an image
by evolving it until they like the produced image or by pub-
lishing it so that other people can view it and evolve it as
well. This allows the fitness of an image to be determined
based on the user’s perspective of an attractive image and
not a traditional fitness function determined by the score of
the produced artifact. This methodology allows one to de-
termine the fitness of artifacts that are not easily calculated.
Sakamoto et al. talk about the different values of a creative
artifact, for instance novel and useful or original and valu-
able. They also talk about the use of crowd workers to be
the fitness function for creative work (Sakamoto, Nickerson,
and Bao 2011). We aim to implement a similar evaluation
process that will be discussed later in the paper.

Endless Forms (Clune and Lipson 2011) is a variation on
Picbreeder that uses the same idea of using a genetic algo-
rithm to generate an evolved form of a 3D image and present
it to a user. The user then decides whether or not to publish
the image or continue to evolve it. Endless Forms also allows
the tagging of artifacts based on what they represent. This al-
lows people to classify the images they evolved. Similarly,
we are using human computation to determine the subjec-
tive fitness of our genetic algorithm’s artifact. However, we
will not be giving individuals the ability to evolve the ar-
tifact within the system, but rather aggregating the crowd’s
feedback to perform a more directed evolution.

Automatic game generation is a complex task, and re-
quires a subjective fitness function as opposed to traditional
quantitative ones. Togelius and Schmidhuber were able to
develop a genetic algorithm that developed games based
on an objective fitness measure (Togelius and Schmidhuber
2008). Our aim is to use the crowd to create a more useful
fitness function. By guiding the genetic algorithm with a fit-
ness function developed by humans we hope to see the over-
all fitness, from a subjective standpoint, increase as more
people participate in the evaluation process.

The next issue we will face is developing a good survey
that will capture the necessary information but will not be
cumbersome to the user. We focus on developing tasks based
on the best practices for survey information described by
Alonso (Alonso 2009). These practices are described later
in the paper in the Front-End section.

To determine the success of this portion of our project
we will need to analyze the input we gather from the
crowd. This will be done by analyzing the trend of data and
ensuring that there are control questions in place that keep
spammers from submitting information. We will also do
self-verification of highly clustered artifacts to see what the
crowd is determining as attractive. These processes will be
covered in more detail in later sections.

System
Our system constitutes three major parts: the algorithm to
generate the Interactive Animated Graphic (IAG) for evalu-

ation by the crowd, the Front-end website presented to the
human worker displaying the IAG for evaluation, and the
Back-end server which hosts all the data and performs the
mutation once all the IAGs of a single generation are evalu-
ated. A worker on AMT is redirected to the website hosted
by us and is presented with a random IAG of the latest gen-
eration for evaluation. Upon completing the evaluation, the
worker receives a confirmation code in order to receive pay-
ment. Finally, once all the candidates of a generation are
evaluated, the mutation algorithm is executed to generate the
next batch of candidates. We shall present the Algorithms
used followed by a description of the front-end and back-
end implementations.

Algorithms
The genetic algorithm produces IAGs which are then eval-
uated by the crowd. An IAG is specified by a collection of
rules, for example a computer program. In order for a ge-
netic algorithm to produce IAGs, each IAG must be encoded
as a genome manipulated by the genetic algorithm and inter-
preted as the defining rules. The specification of this genome
determines the potential diversity and constraints in the set
of possible IAGs. We currently have one working genome
specification and the genetic algorithm to manage it.

IAG Genome The IAGs are inspired by grid-like Atari
games. In Atari games, there are a few different object
classes defined by movement and interaction rules. Most of
the time, the rules acting on an object take input from the
grid cells immediately neighboring the location of the ob-
ject. In (Mnih et al. 2013), Atari agent behavior is learned
by training convolution networks which process the input
grid in patches of neighboring cells. We also assume that the
kinds of rules that will produce the most Atari-like games
will be functions of neighboring cell patches. Therefore, the
main ingredient in our IAG genome specification is a collec-
tion of perceptrons (Rosenblatt 1958) determining the acti-
vation of a cell dependent on the input from its neighboring
cells. The weights of these perceptrons are defined in the
genome, and the total number of weights is the number of
neighbors (4) times the number of perceptrons.

The number of specified perceptrons is predetermined to
be at most 9, corresponding to regions of the grid space:
northwest, north, northeast, west, center, east, southwest,
south, and southeast, times a specified number of allowed
object classes. Cells in each region of the grid in the same
object class all follow the same perceptron rule. This is due
to the observation that in Atari games, similar objects tend
to occupy similar regions of the grid. The demarcation of the
different regions is another set of four parameters defined in
the genome.

Having specified the object classes as perceptron rules and
the object locations as grid regions, the final major element
of the genome is the level design, or the initial activation of
the cells in the IAG grid. Two different levels of a game with
the same set of rules may feel very different to human play-
ers. Therefore, the initial state of the IAG must be encoded
by the genome to avoid losing this important information
when instantiating a game from a genome.

A few other global parameters are also specified in the
genome. One is the granularity, or size, of the IAG grid.
Another is the wrapping rule for each perceptron: that is,
whether or not a cell on the edge of the grid takes as a
neighbor the cell on the exact opposite side. Finally there is
the number of perceptrons used as object class definitions,
which we allow to vary between 5 and 9.

One important element of games that is missing from
the IAG objects is the player agent definition. In Atari-like
games, such as the ones generated by the Video Game De-
scription Language (Schaul 2013), there are many different
kinds of player agents: ones that move in all four directions,
ones that move in two directions but can jump, ones that
shoot, ones that melee, etc. In our framework that defines
IAGs as perceptron rules on the grid cells, it is currently im-
possible to incorporate such a player due to the necessary
nonlinearity in the function on neighboring cells and ac-
tion inputs. This difficulty makes IAGs more like animations
than actual games. To make them more game-like, we allow
human players to interact with them by clicking on cells to
toggle their activation. In exploratory testing we found that,
even without clearly defined objectives, humans can set their
own objectives and enjoy interacting with IAGs with enthu-
siasm ranging between mild and substantial.

Genetic Algorithm The function of the genetic algorithm
is to manage and act upon a population of genome instances,
improving the measured fitness of its top-ranking members
over generations. In our project, an IAG’s fitness is a sub-
jective evaluation provided directly by the player through a
survey question.

The main steps in each generation of our genetic algo-
rithm are grade, kill, and repopulate. After grades are pro-
duced for each member by averaging its evaluations, the
lowest-graded members of the population are removed ac-
cording to the kill rule. Finally, new members are added
according to the re-population rule, which may apply mu-
tations to surviving members, produce cross-bred children
of surviving members, or create new randomly initialized
members from scratch.

Front-End Website
We developed a website that allowed a crowd worker to in-
teract with our IAGs. The design of the website was made
to be simple, aesthetically pleasing, and fast. We wanted the
user to have minimal barriers preventing them from com-
pleting an evaluation. The Bootstrap framework was used to
style the website and make the overall user experience pleas-
ant. Along with Bootstrap, we added custom JavaScript and
jQuery code to the website to give the user responsive feed-
back and a browser agnostic display. The front-end of our
project needed to have a simple way of gathering responses
from users and sending the evaluation information back to
our server. We followed many of the recommendations men-
tioned by Alonso (Alonso 2009) about how to produce an
effective survey design. We self-contained all the informa-
tion needed on one page and minimized the clutter by hid-
ing non-essential data from the user’s view. We maintained
a clear set of instructions by stating that the user can interact

with the IAG by clicking within it and seeing how it reacts.
After the user has lost interest in the current IAG they can
click the finish button and fill out a short one (1) question
survey and hit submit. Once completed we then send the in-
formation from the user’s browser to the server which in turn
stores the evaluation. The functionality of the server is cov-
ered in a later section of the paper.

Gathered Information When an evaluation is submitted
there are several details that we collect from the user’s ses-
sion and store on the servers. Some of the information we
collect passively without the user being affected while inter-
acting with the IAG, and some feedback is explicitly asked
for from the worker. This information is essential to deter-
mine the fitness of an IAG and perform the evolution pro-
cess. Using the gathered information described below we
hope that continued evolution increases the overall fitness
of the top members of each population.

1. Evaluation score: This is the rating given by the user cor-
responding to a specific IAG instance. The scale for this
field is between 1 and 3. This is the main subjective ques-
tion posed directly to the user. A crowdworker would have
to at least answer this question in order to get paid for the
task.

2. Number of clicks: This is the number of times the user
clicked within the IAG. This metric may represent how
interactive an IAG appeared to be to the user. More clicks
may imply a more interesting IAG or user experience.

3. Location and time of clicks: We record all click events
that happen within the IAG. This metric allows us to see
the clicking pattern during an evaluation, and helps deter-
mine if a IAG was responsive to the worker’s clicks. We
also use this information to measure the total time spent
on an evaluation.

4. Member Information: To properly evaluate the members
of a generation we need to send the member’s information
that goes with each evaluation. This is a lightweight rep-
resentation of the evaluated member and is stored on the
server for later use.

Integration with AMT We use AMT in order to acquire
the necessary human workers required to evaluate the candi-
dates of each generation. For integration with AMT we will
redirect the user to the evaluation page on our website from
the Human Intelligence Task (HIT) page. There, a Turker
will participate by interacting with the IAG and submitting
a one question survey once finished. Upon completion the
Turker will be shown a loading screen while the informa-
tion is being processed. Once the evaluation is stored on the
server the worker is presented with a confirmation code for
his evaluation which must be entered into a field on the AMT
HIT’s page. This confirmation code allows us to verify the
work done by the worker and pay the worker for the com-
pleted task. To prevent spammers we only allow a code to
be used only once and keep a record of previously submitted
confirmation codes. AMT integration allows us to seed our
website with several initial generations in hope of attracting
public participants.

Public Participation To avoid only receiving informa-
tion from one demographic we decided to use more than
just AMT for our subjective fitness function. We created
a publicly hosted website that allows anyone to freely
contribute. Using both voluntary and compensated par-
ticipation is a good way to gather a large user base.
The current version of the website can be viewed at
http://geneticcrowd.appspot.com/. We decided not to imple-
ment an account system to maintain a simple and fast user
experience.

Back-End API
In order to enable crowdworkers to evaluate IAGs and then
perform the mutation between generations of the population
we had to develop and host a website. We decided to use
Google’s AppEngine Platform (Ciurana 2009) to develop
and host the website. The AppEngine service is widely de-
scribed as a Platform as a Service (PaaS). This basically
means that a customer of this Platform can develop and build
a web application and deploy it to the platform which in turn
provides the network, servers, storage and other services to
host the consumer’s application. This is very helpful to a
customer as it abstracts away the low level details of hosting
a website, such as server management in relation to failures
and crashes, and enables the consumer to concentrate on de-
veloping features for their web application.

In order to host a web application on Google AppEngine
one can do so by either using Python or Java as the program-
ming language of choice. We decided to use Python due to
its ease of use and ability to setup quickly. While Java is
generally considered a more stable choice for developing an
extensive system, we preferred the flexibility provided by
Python especially since it is better suited to rapid iteration
based development of a small system.

REST API The back-end API on the server had to provide
two major functionalities. The first functionality is the abil-
ity to store candidates of a population and their evaluations
collected from the human crowd workers. The web server
should also be able to provide an Application Programming
Interface (API) to enable the fetching and storing of these
genome instances for each generation. The second task that
the web server needs to perform is to detect when all genome
instances of a generation have been evaluated and start the
mutation algorithm to generate a new generation for the next
evaluation round.

We implemented a REST API to store and fetch genome
instances from the web server. This involved initially design-
ing a database schema to store each genome instance and
link it to a specific generation. We created a model to de-
scribe a single candidate using the NDB API provided with
Google’s AppEngine service. The NDB API provides per-
sistent storage capabilities in a schemaless object store. We
also store the evaluation of each candidate of a generation.
We collected a minimum of four evaluations for each can-
didate from the crowd of human workers. These evaluations
are stored as part of the candidate model described earlier.
We decided against describing and maintaining a separate
evaluation model so as to have fewer object models in the

long run.
In order to determine whether a given candidate has

been evaluated the required number of times, we main-
tain the state of each genome instance. Initially a candi-
date of the population is in state not-evaluated when it is
created. When a crowdworker starts evaluating a particular
genome instance it transitions to the state locked denoting
that this genome instance should not be presented to any
other crowdworker. If the crowdworker abandons the eval-
uation task midway the genome instance transitions back to
not-evaluated; otherwise upon the completion of the evalua-
tion task it transitions back to the state not-evaluated. Upon
the submission of the fourth evaluation of the candidate by
a crowdworker the state of the candidate is changed to eval-
uated. When a candidate is in state evaluated it is no longer
presented to a human worker for evaluation.

Mutation Once all the genome instances of a population
are in the state evaluated, i.e all the candidates have been
evaluated at least four times, we execute the mutation algo-
rithm to generate the next generation of candidates for eval-
uation. In order to detect when to run the mutation algorithm
we check the states of all the genome instances every time
a crowdworker completes an evaluation of an IAG and it is
submitted to the server. We had to decide whether to per-
form this check every time an evaluation was submitted or
at regular intervals through the execution of a cron job. We
eventually decided on performing the check every time an
evaluation was submitted so as to minimize the time spent
between generations. If we had implemented this check as a
cron job there could have been times when we had a number
of human workers ready to perform the evaluation task but
no candidates to evaluate, as the cron job’s next scheduled
execution could be a couple of hours away.

For the purposes of the mutation step we need to deter-
mine the fitness of each candidate in the current generation.
We compute the fitness of a candidate by calculating the av-
erage evaluation score of each candidate based on the scores
submitted by the crowd workers on AMT. We currently do
not use the information gathered regarding the clicks and
the time spent by each user interacting with the game while
evaluating it to drive evolution. In the future we would like
to make the fitness function multimodal and incorporate this
data into the calculation of the fitness of a candidate.

Experiment
We conducted an experiment wherein we used AMT to col-
lect a crowd to evaluate our artifacts generated using the
genetic algorithm mentioned in the previous section. We
shall now describe the setup and execution of the experi-
ment starting with the initial setup of the generations and
then present the results in the following section.

Generation Setup
We setup each generation of the iterative process to contain
twenty candidates. The first generation was populated by
randomly generated candidates. We determined that twenty
candidates per generation would be enough to give us good
coverage without becoming unmanageable. Each candidate

Figure 1: Amazon Mechanical Turk HIT

IAG is presented to the user through our website, and the
user is asked to interact with it and perform a standard one
question subjective evaluation. Once the required number
of evaluations have been performed for each IAG, the sys-
tem automatically determines the fitness of each IAG and
evolves the new generation. The new generation is evolved
from the old generation by either carrying forward survivors
from the old generation as they are, by mutating the sur-
vivors of the old generation to generate new members, or by
creating random new members. The top 20% of the IAGs of
the previous generation are carried forward to the next gen-
eration unchanged since they represent the best possible so-
lutions to the problem. The next 40% of the new generation
are obtained by mutating the top 20% of the previous gen-
eration by randomly changing their properties. Finally, the
last 40% of the new generation is populated by randomly
generating new IAGs. This is done so as not to limit the gen-
erated solutions to a small area of the entire search space of
possible solutions.

By keeping the top 20% of the previous generation un-
altered, we can determine if there is a highly fit IAG that
persists across generations. The next 40% allows us to take
the highest performers and slightly change their features,
and potentially find solutions that have better fitness than
the previous solutions. Populating the remaining generation
with random new members allows us to explore more of the
search space and potentially find a novel solution that would
not have been possible through mutation. These are gener-
ally accepted as standard mutation practices.

Evaluation
As mentioned in a previous section, we track various
amounts of information about each user’s interaction with
the IAG that is presented to them. The primary evaluation

metric used is the evaluation score that is submitted by the
participant after he or she has finished interacting with the
IAG. This score assists in determining the fitness of the IAG
and ultimately whether or not it will make it into the next
generation. We require that each IAG be evaluated at least
four times, and we take the average of those evaluations to
determine the fitness. This is done to increase granularity of
fitness and to ensure our solutions are those IAGs which are
enjoyed by more than a single individual. The purpose of the
experiment is to optimize the subjective appeal of the IAGs.
The secondary evaluation metrics such as number, location,
and time of clicks are used to determine the relationship of
these objective metrics with the subjective ratings. Our find-
ings are described in the results section of this paper

Amazon Mechanical Turk HITs
We integrated our website with Amazon Mechanical Turk
and tasked Turkers with evaluating our candidates in each
generation. Figure 1 shows the HIT presented to the workers
in its final iteration. After each evaluation, a unique confir-
mation code is generated by the server and presented to the
user. This is shown in Figure 2. The worker has to enter this
confirmation code into a field on the HIT’s page in order to
be compensated for the work performed. We created mul-
tiple HITs that asked the workers to evaluate several IAGs.
To compensate for the volume of evaluations we required
per IAG, we asked each Turker to rate four IAGs in a single
HIT. Since each generation contained twenty IAGs requiring
a minimum of four evaluations each, we needed a minimum
of twenty workers to complete our HIT in order to generate
the next generation of citizens.

The original HIT contained confusing language and re-
sulted in poor performance on the HITs and many incom-
plete tasks. In the second iteration of the HIT we strived to

Figure 2: Confirmation code given by the server

provide clearer instructions for the workers, and this resulted
in an almost 100% HIT completion rate. The second itera-
tion of our HIT also contained a comments box that allowed
Turkers to provide us feedback on the task. Some of these
comments highlighted the shortcomings of our website. This
included the asking by one Turker for ”[a] reload button or
icon” to allow continuous evaluation without refreshing the
page. Another Turker noted the low pay of the HIT for the
perceived amount of work. We found that average comple-
tion time for our task was higher than we expected and sub-
sequently raised the compensation to match. Many workers
found the task to be ”interesting” and ”cool”.

Results
To assess the effectiveness of our combined system, we test
the hypothesis that the fitness of the evolved solutions rises
over time. This would confirm both that the genetic algo-
rithm is in fact moving its population in the direction of
higher average aesthetic assessment and also that the human
computation interface we use is effective in providing a use-
ful fitness measure to the genetic algorithm. We also con-
duct a secondary check on the agreement among workers to
confirm that the aesthetic evaluations are not arbitrary. Fi-
nally, we examine the objective variables collected and their
relationships with the primary subjective fitness measure to
assess their potential as inputs to the fitness function.

Evolution
To confirm that evolution improved the fitness of the solu-
tions over generations, we look at the distribution of average
subjective evaluations over the members of each population,
as shown in figure 3. Because the evolutionary algorithm
only keeps its fittest members, which we designate as the
solutions of any given population, we can ignore the lowest-
scoring majority of the population consisting of newly ran-
domly initialized or badly mutated IAGs. In our analysis,
the top 25th percentile of the population by fitness is consid-
ered as the solution subpopulation, and it is these solutions
in which we hope to see improvement over the generations.

To assess the rate of improvement in the solution subpop-
ulation, we model these assessments as a Hidden Markov
Model (HMM) (Zucchini and MacDonald 2009). In each
generation t, each observed average evaluation yk,t for an
IAG k in the solution subpopulation is treated as a Gaussian
random variable which depends on the hidden state µt repre-
senting the true average, also treated as a Gaussian random
variable. This true average is an autoregressive AR(1) pro-
cess changing from generation to generation by the evolu-
tion rate β. Thus, the time series model of evaluations of the
solution subpopulation is described by the following equa-
tions:

(a) Generation 1 (b) Generation 2

(c) Generation 3 (d) Generation 4

(e) Generation 5 (f) Solution evaluations

Figure 3: a-e: Fitness histograms for each generation; f: Fit-
ness of top 25th percentile over generations

Figure 4: Posterior Distribution for β

yk,t ∼ N(µt, σ)

µt ∼ βµt−1

Using estimates for prior parameters such as the noise pa-
rameter σ calculated from the first generation’s observations,
we perform Markov chain Monte Carlo (MCMC) sampling
to estimate the posterior distribution of the evolution rate
β (Lunn et al. 2000). The resulting distribution has mean
greater than 1 and does not overlap 1 in the 95% credible
range, as shown in figure 4. This confirms that the evolution
rate of the solutions in our model is greater than one and that
this result is not coincidental.

Agreement
As further confirmation that the aesthetic evaluations made
by workers are not arbitrary, we investigate the degree of
agreement between workers. Because subjective evaluation

Figure 5: Distribution of Random Disagreement Scores

tasks lack a single gold standard, we hypothesize evaluations
are distributed according to schools of thought. This is when
distinct groups of workers emerge, with agreement within
each group but disagreement between groups. In (Tian and
Zhu 2012), schools of thought are modeled as a Dirichlet
Process, and posterior estimates of the parameters are used
to evaluate worker dependability and task clarity. We take
a simpler approach in which we propose to score the total
disagreement D in a population as follows:

d =

N∑
i

∑
j>k

|vij − vik|

Here vij represents the evaluation of worker j for artifact i.
Thus we are simply taking the total sum of the absolute dif-
ferences in evaluations for distinct pairs of workers across
the population of artifacts. To evaluate this disagreement
score we run several Monte Carlo simulations in which sim-
ulated workers choose random evaluations for each artifact,
then collect the distribution of random disagreement scores
Dr. We would expect d to fall on the far low end or outside
the credible range of Dr.

The disagreement score we calculated for our final gener-
ation was 0.85. Although this is, as expected, on the low end
of the distribution of random disagreement scores as seen
in figure 5, it is not outside the 95% interval, suggesting it
would not be infeasible that many of our workers’ evalua-
tions were made arbitrarily.

One caveat to our approach to estimating task clarity ac-
cording to worker disagreement is that the number of eval-
uations made by each worker is only four, whereas there
are a total of twenty artifacts per evaluation. In (Tian and
Zhu 2012), each worker is expected to complete all tasks.
It may be the case that this deficiency is costing us statis-
tical significance in our disagreement results. Nevertheless,
together with the significantly positive estimate for the evo-
lution rate explained in the previous section, the fact that our
final generation’s disagreement score is in fact on the low
end of the random distribution supports our confidence that
the worker’s aesthetic evaluations are mostly non-arbitrary.

Click Data
One of our research questions was about using objective data
collected from our workers to inform evolution of the sub-
jective measure. In addition to collecting subjective evalua-
tions, we also collected the workers’ click data. While this
was not used as input to the fitness function in our experi-
ments, we examine the distribution of this data over the gen-
erations and compare it to that of the subjective evaluation
data. This provides some insights into how this objective
data may be used in the future to help evolve subjectively
evaluated artifacts.

First we transform our click data into two measures for
each evaluated IAG: average number of clicks c and average
time spent in observation t. We assume c to be a measure of
interactivity and t to be a measure of engagement.

Our first finding is that both c and t are negatively cor-
related with evaluation scores in the early generations and
positively correlated with evaluation scores in only the final
generation. This is a surprising result as we were expect-
ing these measures to correlate positively, if only roughly,
with the subjective measure throughout the entire process.
One possible explanation is that these measures could corre-
spond to a worker’s frustration with an artifact just as easily
as they could correspond to pleasure. Regardless of the ex-
planation, it seems that these objective measures cannot be
naively used as surrogate fitness measures when trying to
optimize subjective evaluation through evolution.

It may be possible to process and refine these measure to
make them useful. Interestingly, when looking at only the
top 25th percentile of any generation, these measures rise
significantly over the generations just as the subjective eval-
uation does, as shown in figure 6. We hope that - perhaps in
combination with other features and with some additional
processing to address outliers - these objective measures
could be used to find an indicator correlated well enough
with the subjective evaluations to be used in their stead. We
leave this question for future work.

Future Work
In terms of future directions of work we have different as-
pects of the system we can improve upon and experiment
with. Currently, we generate very elementary artifacts that
are evaluated by the human workers. In subsequent iterations
of the system we would like to incorporate the genetic algo-
rithms developed by Togelius and Schmidhuber (Togelius
and Schmidhuber 2008) to generate games based on an ob-
jective fitness function and complement it with a subjective
one using the system we developed to gather evaluations
from the crowd.

The design of the HITs posted on AMT also could incor-
porate more information describing our research goals so as
to provide better context to the worker and increase engage-
ment. A number of workers perform the tasks sub-optimally
if they do not know the context or reasons as to why the
task has been posted and the goal it is trying to accomplish.
We also need to implement better mechanisms to check that
the work being performed by the worker is being done so
correctly and not in a hurry or by a bot. This is a difficult

(a) Solution clicks (b) Solution times

(c) Posterior for βc (d) Posterior for βt

Figure 6: a-e: Fitness histograms for each generation; f: Fit-
ness of top 25th percentile over generations

but important task as we rely on truthful subjective feedback
from the user after he or she has interacted with the object
for a decent amount of time. If the feedback is not truthful
or is submitted by an automated bot then the data being col-
lected would be tainted.

In the future we also aim to incorporate the other data col-
lected regarding the evaluation of a candidate by the human
worker into the fitness function. While currently our fitness
function is based on a single piece of data, we would like to
extend it to take into consideration various other attributes
of data collected from the user’s evaluation. It would be in-
teresting to see whether we can make effective use of the
interaction data collected resulting in a better set of candi-
dates during mutation.

The Genetic Crowd system developed by us could also be
used in various other domains that use genetic algorithms
to generate potential solutions, especially areas or problems
in which the solutions cannot easily be evaluated using an
objective fitness function. The easy availability and low-cost
of the crowdworkers on AMT enables researchers to rapidly
collect subjective evaluations in order to evaluate the fitness
of an object.

Conclusion
We have presented a system which enables the use of subjec-
tive fitness functions in genetic algorithms using data gath-
ered from the crowd using the AMT platform. The Genetic
Crowd system has shown that it is possible to use a crowd of
human workers to subjectively evaluate candidates of a ge-
netic algorithm and guide the evolution of subsequent gen-
erations. The results demonstrate the fact that subjective fit-
ness functions can be developed and can be evaluated using
crowd workers. The system developed by us can be gener-
alized to be used by various other domains of problems that
use genetic algorithms and do not have a good objective fit-
ness function.

In the future, we would like to improve the genetic algo-
rithm in order to generate more interesting artifacts such as
Atari type games or animations. If successful in the future
we could develop a game automatically based on genetic al-
gorithms and use the crowd to guide the evolution process
thereby resulting in games that are developed using crowd-
sourced workers.

Genetic Crowd provides a practical way of evaluating
candidates in a genetic algorithm using subjective fitness
functions. We have shown that it is an effective strategy for
guiding the evolution of genetic algorithms.

References
Alonso, O. 2009. Guidelines for designing crowdsourcing-
based rlevance experiments. Magnetic Resonance in Chem-
istry 1–2.
Ciurana, E. 2009. Google app engine. Developing with
Google App Engine 1–10.
Clune, J., and Lipson, H. 2011. Evolving 3D objects with
a generative encoding inspired by developmental biology.
ACM SIGEVOlution 5(4):2–12.
Lunn, D. J.; Thomas, A.; Best, N.; and Spiegelhalter, D.
2000. Winbugs-a bayesian modelling framework: con-
cepts, structure, and extensibility. Statistics and computing
10(4):325–337.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Rosenblatt, F. 1958. The perceptron: a probabilistic model
for information storage and organization in the brain. Psy-
chological review 65(6):386.
Sakamoto, Y.; Nickerson, J. V.; and Bao, J. 2011. Evaluating
Design Solutions Using Crowds. In AMCIS 2011 Proceed-
ings, 1–9.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In Computational In-
telligence in Games (CIG), 2013 IEEE Conference on, 1–8.
IEEE.
Secretan, J.; Beato, N.; D’Ambrosio, D. B.; Rodriguez, A.;
Campbell, A.; and Stanley, K. O. 2008. Picbreeder: Evolv-
ing Pictures Collaboratively Online. In Proceeding of the
twenty-sixth annual CHI conference on Human factors in
computing systems - CHI ’08, number Chi, 1759–1768.
ACM Press.
Tian, Y., and Zhu, J. 2012. Learning from crowds in the
presence of schools of thought. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 226–234. ACM.
Togelius, J., and Schmidhuber, J. 2008. An experiment in
automatic game design. In 2008 IEEE Symposium On Com-
putational Intelligence and Games, 111–118. Ieee.
Zucchini, W., and MacDonald, I. L. 2009. Hidden Markov
models for time series: an introduction using R. CRC Press.

